Isolation and Characterization of 4-Chloro-6,7-dimethoxybenzoxazolin-2-one, A New Auxin-inhibiting Benzoxazolinone from Zea mays

Seiji Kosemura, Hideyuki Emori, Shosuke Yamamura,* Toyoaki Anai,[†] Hiroko Aizawa,[†] Nobuyuki Ohtake,[†] and Koji Hasegawa*[†] Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223 [†] Institute of Applied Biochemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305

(Received August 16, 1995)

A new auxin-inhibiting substance was isolated from light-grown maize shoots. The structural determination was performed by spectroscopic methods and synthesis of 4-chloro-6,7-dimethoxybenzoxazolin-2-one.

During the past century a number of physiological and chemical studies have been done to elucidate the mechanism of phototropic curvature.¹ Recently, we have isolated an auxin-inhibiting substance, 6-methoxybenzoxazolin-2-one (MBOA, 1) from light-grown maize (*Zea mays* L.) shoots as a potent antiauxin,^{2,3} and we reported the structure-activity relationships of benzoxazolinones with respect to auxin-induced growth and membrane-bound auxin-binding protein(s).⁴ In this communication we wish to report the isolation and structural determination of a new auxin-inhibiting substance, 4-chloro-6,7-dimethoxybenzoxazolin-2-one (4-Cl-DMBOA, 2).

Five-days-old de-etiolated maize (*Zea mays* L. cv Canadian Rocky Bantam 85, Kaneko seed Co., Japan) shoots (250 g, FW) were homogenized in 1 l distilled water at room temperature. After incubation for 30 min at room temperature, the homogenate was boiled for 1 h. The filtrate was concentrated to 300 ml and partitioned three times with equal volumes of CH_2Cl_2 . The organic extract was concentrated to dryness *in vacuo* and partitioned between 50 ml of EtOAc and 3 x 50 ml of 0.5 M Na_2CO_3 . The aqueous layer was adjusted to pH 5.5 using H_3PO_4 and extracted with CH_2Cl_2 . The crude extract was separated by TLC (Silica gel $70 F_{254}$) with toluene-EtOAc (1:1) followed by HPLC (TSK gel ODS-80Ts; H_2O -MeCN) and preparative TLC (Silica gel F_{254}) with hexane-EtOAc (3:2) to give F_{254} 0 with hexane-EtOAc (3:2) to give F_{254} 1 in 0.00032, 0.0011, and 0.00008% yields, respectively.

	R_1	R_2	R_3
1: (MBOA)	Η̈́	О҇Ме	ΗĞ
2: (4-Cl-DMBOA)	OMe	OMe	CI
3 : (DMBOA)	OMe	OMe	Н
4 : (BOA)	Н	Н	Н
5 : (4-ABOA)	Н	Н	COMe
6 : (6-ABOA)	Н	COMe	Н

Compound 2 was obtained as an amorphous powder; its molecular formula, C₀H₈NO₄Cl (M⁺, calcd, m/z 229.0141 : found, m/z 229.0153), was confirmed by HR-EIMS. The IR absorptions at 3000 and 1770 cm⁻¹ suggested the presence of a carbamate group. The ¹H NMR spectrum of 2 also showed the presence of a carbamate proton (δ 7.62), an aromatic proton (δ 6.66), and two MeO groups (δ 4.11 and 3.83). The structure of 2 was determined on the basis of spectral data and NOE experiments⁸ compared with those of 3, and unambiguously established by synthesis; by chlorination with surfuryl chloride in benzene at room temperature for 10 min., compound 3⁹ prepared from 2,3-dimethoxyphenol, was readily converted into 2 in 86% yield. The ¹H NMR spectrum of synthetic sample 2 was compatible with that of natural one. Above concentrations of 10⁻⁵ M, compound 2 inhibited the auxin inhibiting elongation in the Avena coleoptile section test. Inhibitory activity of 2 was almost comparable to that of 3 and higher than that of 1.2 Interestingly, compound 6 and its analogues have been synthesized and exhibited antiinflammatory properties, 10 however, inhibitory activities of 4, 511 isolated from kernels of a Fusarium-resistant hybrid of Zea mays (Funks 4106; Ciba-Geigy seeds) and 612 were lower than that of 1. It is clear that 2β -glucosides of 1,4-benzoxazin-3-ones are initially hydrolyzed with endogeneous glucosidase to afford 1,4-benzoxazin-3-ones at the light exposure side, further 1,4-benzoxazin-3-ones immediately afford benzoxazolin-2-ones which interestingly inhibit the coleoptile growth of maize. These observations strongly suggest the possibility that compound 2 is formed from the corresponding 4-chloro-1,4-benzoxazin-3-one. Studies are now in progress to isolate both the glycoside and its aglycon.

The authors wish to thank the Ministry of Education, Science and Culture (Japan) for Grant-in-Aid for Scientific Research on Priority Areas No. 06240103.

References and Notes

- J. Bruinsma, C. M. Karssen, M. Benschop, and J. B. Van Dort, J. Exp. Botany, 26, 411 (1975); J. M. Franssen and J. Bruinsma, Planta, 151, 365(1981); H. Noguchi, K. Nishitani, J. Bruinsma, and K. Hasegawa, Plant Physiol., 81, 980(1986); K. Hasegawa, M. Sakoda, and J. Bruinsma, Planta, 178, 540(1989); S. Kosemura, S. Yamamura, and K. Hasegawa, Tetrahedron Lett., 34, 481 (1993).
- K. Hasegawa, S. Togo, M. Urasima, J. Mizutani, S. Kosemura, and S. Yamamura, *Phytochemistry*, 31, 3673 (1992).
- 3 S. Kosemura, S. Yamamura, T. Anai, and K. Hasegawa, *Tetrahedron Lett.*, 35, 8221(1994).
- 4 M. Hoshi-Sakoda, K. Usui, K. Ishizuka, S. Kosemura, S.

- Yamamura, and K. Hasegawa, *Phytochemistry*, 37, 297 (1994).
- 5 Physical data for **2**: $C_9H_8O_4NC1$ [m/z 229.0153 (M^+)]; V_{max} (film) 3250 and 1770 cm⁻¹; $\delta H(CDCl_3)$ 3.83(3H, s) (MeO-C₆), 4.11(3H, s)(MeO-C₇), 6.66(1H, s)(H-C₅) and 7.62(1H, br.s)(H-N₃); $\delta C(CD_3OD)$ 57.66(q), 61.21(q), 107.98(s), 109.90(d), 124.96(s), 136.78(s), 149.37(s), and 156.26(s).
- 6 Physical data for 3: $C_9H_9O_4N$ [m/z 195.0510 (M^+)]; V_{max} (film) 3250 and 1760 cm⁻¹; $\delta H(CDCl_3)$ 3.84(3H, s) (MeO- C_6), 4.14(3H, s)(MeO- C_7), 6.61(1H, d, J=8.4 Hz) (H- C_4), 6.69(1H, d, J=8.4 Hz)(H- C_5), 8.70(1H, br.s)(H- N_3); $\delta C(CDCl_3)$ 57.02(q), 60.61(q), 101.94(d), 108.07(d), 124.42(s), 134.14(s), 134.39(s), 147.39(s), and 155.39(s).
- 7 Physical data for 4: $C_7H_5O_2N$ [m/z 135.0311 (M^{\dagger})]; v_{max} (film) 3200, 1775, and 1735 cm⁻¹; $\delta H(CDCl_3)$ 7.02 7.16(4H, complex) and 7.88(1H,br.s).

8 NOE experiments of 2 and 3

- 9 R. J. Nachman, J. Heterocyclic Chem., 19, 1545 (1992).
- 10 C. Safak, H. Erdogan, E. Palaska, R. Sunal, and S. Duru, J. Med. Chem., 35, 1296(1992).
- 11 D. A. Fielder, F. W. Collins, B. A. Blackwell, C. Bensimon, and J. W. ApSimon, *Tetrahedron Lett.*, 35, 521(1994).
- 12 S. Ishida, Y. Hashida, H. Shizuka, and K. Matsui, *Bull. Chem. Soc. Jpn.*, **52**, 1135 (1979).